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Abstract In many applications one needs to process and analyse large volumes of data. For example: air
traffic control; ocean surveillance; medical imaging; robotics; environmental monitoring; and air-to-air
defence. Decision support systems provide tools to handle this information. Typically the data is acquired
from multisensor systems. A fundamental problem that arises is that of utilising the data for detection and
localisation of ohjects. The underlying problem is referred to as the data association problem. The data
association problem can be formulated as a multi-dimensional assignment problem. This problem, which

arises in many applications, 1s computationally difficulf (NP hard} and has been the focus of considerable
atfention. A number of algorithms {(both exact and heuristic) have been proposed. In this paper we will

detail models for multisensor data association problems.

1. INTRODUCTION

~-Data-integration-is a proeess that advanced species- -

carry out on a day to day basis. For example, the
human brain processes information from the five
sensors, eyes, skin, ears, tongue and nose, to make
decisions/inferences on particular issues, It is the
combining of this data that is referred to as
multisensor data fusion. That is, combining
information from a variety of sensors and sources
to obtain a better understanding of the situation.

The military featured prominently in carly
applications of data fusion such as: battlefield
surveillance; automated target identification; and
target tracking. Recently, the methods have been
applied te  non-military  siteations  such  as
monitoring of manufacturing processes; medical
diagnosis; robotics; and smart buildings {Hall and
Llinas [1997]}.

The JDIL. (Joint Dhrectors of Laboratories) have
proposed a generic data fusion model. This model
(Hall and Llinas [1997]) separates the fusion

process into four levels of refinement: object;
situation; threat; and process. The first level is

coneerned - with-determining the position; identity - -

and attributes of an object. The second level
determines what the objects are doing and how
they are dotng it. The third level makes inferences
as to the objects intent, threat and vulnerability.
The final level is concerned with monitoring the
previous levels to improve their outcomes.

Bar-Shalom and Fortmann [1988], Bar-Shalom
and L1 [1993] and Hall [1992] describe the
mathematical techniques that can be applied to
each of the data fusion levels. Broadly, these
techniques come from such areas as signal
processing, statistical estimation, control theory,
artificial  intelligence and classical numerical
methods {Hall and Liinas [1997]).

in the model, information flows from cae level to
another and the quality of the decisions/inferences
made is highly dependent on the quality of
information in each level. As Level 1 inputs into
all other levels, we will focus on this fevel,
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A key function within the Level | process is that
of data  association. It  determines  which
measurements from one or more sensors actuaily
relate to the same object. The characteristics of the
problem will determine how the data association is
carried out.  For example, if the sensors are
commensurate {eg. two sonars, a towed array and a
fank array) then the measurements can be directly
combined. That is. on a measurement-to-
measurement  basis. However, for non-
commensurate sensors (eg. a radar and a sonar},
the data can be combined at a measurement-to-
track or track-to-track basis,

The data association problem can be formulated in
many different ways. Pattipati et al [1992] and
Poore {1994] express the problem as a
maximisation of the joint likelihood function of the
measurement partition,  This leads to a mult-
dimensional assignment problem that is solved
using Lagrangian relaxation. Yeddanapudi et al
[1997] formulates the problem as a sliding window
two-dimensional (2-D) assignment problem. The
measurements are assigned to the most recent
tracks by minimising a combined likelthood cost
function that they developed. A modified zuction
atgorithm ts then used to solve the 2-D assignment
problem.  Whereas, Iltis and Anderson [1996]
form the association by annealing.

2. MODELS

The Data Assoctation Problem (DAF) has been

v~ N0y (noise)
and
w, ~ Uniform(0,8,) .

The measurement /, =0 is used to denote when a
sensor misses a detection, that is, it corresponds to
a dummy measurement, &,

Let  Z ={{y i, =0l..n}be the set of

measurements from sensor 5 and Z be the set of
measurements {rom the entire region of interest,

Z={Z 5=123}.

i
A 3-tuple of measurements is denoted by

={0, s=123}.

iiahy
Given a target 1, at position (x,, y,), we need to
determine the probability that the 3-tuple Ziiis
refates to target 1. We do this via the likelihood
eguation:

A(ngfgi:; XLy )=

(e W

Ll !”'SH " ?r
{p(é.\'i‘ Exf!y!)PD.\'] {]‘“mPD.\'}{“J

s=]

where
1, ii =0

(3, otherwise

Gy, = i

formulated as  an  N-cimensional assignment
problem: a good account is given in Poore [1995].
In this section we provide the formulation for the
case _when there are three seascrs (N=3). . This
case. which typifies the general case, arises in
many applications, for example in covert military
.{)pei-ations._. e . BT

Consider three non-collocated passive sensors s
(s=1,2,3), of known positions, (x,,y,). Each
sensor s is characterised by its field of view, ¢,
probability of detection, Pp,, and measurement
error, o,. Denote the number of measurements
each sensor receives by n, where n, is not
necessarily the same for each sensor. These

measurements, denoted by {,, where

i.=012,...,n

written as:

are bearing only and can be

%

r 8, +v,;. if the measurement is from target j.
s = P .
W . i it is a spurious measurement.
where
g el 25 Y
B, =tn | ——= (O
X—x;

LN
Note that

f){‘é’,u‘.\ l Ars yr) - N(g.\'r !O—sz) :

“Target £'s location (X, 3, is estimated by solving

{2

(X, ¥ y=uwyg max A(Z,, 1 x.y,) (3

EANS

and it’s bearing é_w from (1):
il )

To formulate DAP as a 3-dimensional (3-D)
assignment problem we define the following
feasible partition,

y={Z,,Z,},
where 2, consists of 3-tuples corresponding to

targets and Zy those (o false alarms (detected by
only one sensor). Nete that Z =2 1)Z, , multiple
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assignments are allowed to the dummy
measurement, £ o, only and £(3} is the event that
the partition y is true.

By solving

L)
) ©

where
Vo=(0.Z,).
L) = pZ1EG)],
L(pod = pIZIEGAT,

and [ is the set of all feasible partitions, the most
likely partition of Z is obtained.

The problem in (5) can be shown (Pattipati et al
[1992]) to be equivalent to

minfln L{¥g ) 1n L(3)]
7

where L(y) pses the maximum likelihood

estimates, (3) and (4), for the target information.
Furthermore,

L) ~nlp= ¥ ¢ (6)
fiafl 22,
where ¢ is the <cost of associating

fiiafy

TR xy =l J=12.. 8, {10}
i=0 k=t

]7._1 iy

2 z'xifk: . P=12,00m an
F=0 k=0

The above 1s just a 3-D assignment problem.

3. SOLUTION METHODS

The 3-D assignment problem (7)-(i1) is NP hard
(Garey and Fohnson {1979]) and thus it is unlikely
that an efficient algorithm  can  soive il
Unfortunately, in  many applications it is
imperative that pood solutions be obtained in
relatively short time.

A number of solution methods for the 3-D
assignment problem have been proposed
including: branch and bound (Balas and Saltzman
[1991)); Lagrangian relaxation (Poore and
Robertson [1997], Frieze and Yadegar [1981] and
Pattipati et al [1992]); and various heuristics such
as tabu search (Magos [1996]}, and greedy, max-
regret and reduced cost (Balas and Saltzman
[1991]). A good review of the 3-D assignment
problem is given in Burkard and Cela [1997].

31 Heuristics

A number of simple heuristics (Balas and
Saltzman [1991]) have been proposed for the 3-D

measurement 7;, i and i; together and 1s given by,

oIz 1
i(Iw«é‘m‘\ )ln f;D_;(f& +2 .

AN

y=i

Chiyiy =

T P

Writing ijk for is; and defining the binary
variabies as:

gy

,, if the3-tpleZ,,
: ijk { ’ s {7)

0, otherwise

then {6) can simply be written as:

moorn My

Syp im0 f=0 k=D

with constraints given by

X =l k=120, (9)

assignment problem inciuding Diagonal, Greedy,
Reduced Cost and Max-Regret. These heuristics
construct a solution by successively fixing
varigbles. Apart from Diagonal, these heuristics
are not explicitly described and hence are subject
to interpretation.  Our interpretation of each

~-heuristic is detailed- below. - Further- - we -note-that

when a variable xy is set to L, all variables in the
same row (i), column () and level (k) are set to 0.
We refer to a set of variables in the same row or
column or level as a slice.

The heuristics differ only in the manner in which
variables are selected to be set to 1. In all cases we
assume that s, =n, =ny =n. Diagonal simply
sets x,; =1 for all i, Greedy selects from the set

of unassigned variables the cheapest and fixes it o
1. Reduced Cost modifies the costs 1n each of the
3n shices as follows. In each slice the largest cost
is found and this quantity is subtracted from afl
costs in the slice. Then the variable with the most
negative reduced cost is selected. Max-Regret
calculates the difference between the two smallest
costs in each slice. The slice with the largest
regret is chosen and the corresponding variabie
with the smallest cost is selected.
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%MR-gap %l P-gap Average CPU Time (s)
n MIN AVE MAX MIN AVE MAX MR LP Opt
5 0.00 497 19.30 (.00 0.34 3.60 .00 (.01 0.02
10 0.31 2.99 10.23 3.00 0.34 0.67 0.01 (.10 (.33
(5 (.07 247 748 0.05 0.16 0.29 (.04 0.42 2.87
20 0.25 [.90 5.83 0.04 0.10 (.18 0.12 141 19.76
25 0.36 1.68 2.84 4.00 0.04 (.03 (.28 2.82 83.34
30 0.03 1.46 333 0.00 0.00 (.03 0.59 4.33 308.21

Table |: Max-Regret and relaxed LP Performance on Problems Solved to Optimality

Balas and Saltzman [1991} extensively tested the
above heuristics on sets (20 problems per set) of
randemly generated problems of sizes ranging
from n=4t020, in evern increments. They
concluded that Max-Regret performed the best.
When evaluated against the optimmum, the guality
of Max-Regret was poor. This contradicts our own
testing which is detailed below, This may be due
to the fact that in our interpretation, we are looking
at all 3n slices, perhaps they are only looking at .

To provide a measure of the quality of the solution
generated by Max-Regret, we tested it against the
optimal and also against the relaxed LP solution
(which  comes from relaxing the integer
restrictions). The CPLEX Version 5.0 package for
solving  mixed integer linear programming
problems was used. Our computational work was
carried out on a Silicon Graphic Workstation (R
5000) running at a clock speed of 150MHz. Max-
Regret was implemented in C._ Our test data

3.2

Lagrangian Relaxation

Lagrangian

relaxation

methods

have

developed by a number of authors (Deb et al
[1997], Frieze and Yadegar [1981], Poore {1995],
Poore and Rijavec [1994] and Poore and
Raobertson 19971}, In the 3-D case, these methods
relax one set of constraints at a time, optimise the
relaxed problem with respect to the Lagrangian
multiplier, and then restore feasibility by enforcing
the relaxed constraint using a heuristic.

Using the multiplier Ez[iﬂ,&,/lg....,,%”]}(r to

relax (9) we get the formulation:

o Lomm o
f{A)y=min ¥ Sdgyyt LA
Yy =0 j=0 £=0

subject to

consisted of 840 random table problems generated
as follows: n ranged from 3 to 30; for each n, 30
problems were generated by choosing the integer
cost-- coefficients— randomly  from- a~ uniform
distribution with values 0 to [00. The quality was
measured using the statistics:

R—Opt
%MR——gapzm-——*—MO 2100
s
—Opt
G LP - gap = —!:P——‘zw x 100

where MR is the Max-Regret solution value, Opt is
the optimal value and LP is the relaxed LP value.
Table | presents the results for n=3 to 30 in steps
of 5.

Our computational results indicate that Max-
Regret yields a sclution that is within 2% of the
optimum for large . Further, as n increases %LP-
gap is close to 0. This suggests that for larger »,
the refaxed LP solution gives a good lower bound.
We verified this for a further 270 random problems
with n=35 to 75 in increments of 5. In all cases
Max-Regret was within 1% of the optimum,

Ty
Yoy =1 fori=L2,00n

=0
I e
Z}'U =1 forj=12,...,n
=0
“where’
dy = mkm(cak = Ay
and

3

2 &y =y, forailiand f.
k=0 ‘

The above is, for a given A, just a 2-D assignment
problem which can be solved efficiently. The duat
problem is to determine

max f(A).
1

The solution of this problem is difficult because of
tts discrete nature. In the direct application of the
Lagrangian multiplier techniques, duality gaps
often arise. The subgradient optimisation (Held et
al [1974] and Sandi [197S]) provides a numerical
technique for reducing the duwality gaps. This
technique is applicable to non-differentiable
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optimisation problems. It allows a sequence (5,
to be determined, which converges to the optimal
%. Usually. once a feasible solution that is within a
specified tolerance of the optimal is obtained the
computation ceases and that solution is accepted.

A pumber of computational strategies have been
proposed and tested on randomly generated
problems. No detailed comparative analysis has
been done to date. Frieze and Yadegar [1981]
claim good results on 16 test problems with
ny Ry 0y £192, Poore [1995] and Poore and
Rijavec [1994] computational results on randomly
generated multi-dimensional data showed that the
Lagrangian solution was close to optimal and
certainly significantly better than the solution
generated by a greedy heuristic.  Poore and
Robertson {1997] claim, on the basis of 30
randomly generated problems (5-D with each n; £
8), that the recovered feasible solution from the
relaxation is, on average, within 2% of the optimal
obtained by a Branch and Bound procedure. Deb
et al [1997] claim, on the basis of randomly
generated problems (up to 10-D), solutions that are
within 5% of the optimal.

The main advantage of the method is that it
provides both a lower and an upper bound on the
value of the optmal solution. This provides a
mechanism  for evaluating the guality of the
feasible solution chtained against the theorstical
best possible. The main disadvantage is that

problems with even a=4 to 26. Magos and
Miliotis [ 1994] tested their algorithm on a set of 30
randomly generated problem with =5 tw© 9.
Further experimental work is needed to properly
evaluate the effectiveness of the Branch and
Bound method.

3.4 Branch and Cut

In recent years the method of Branch and Cut has
emerged as a powerful technique for soiving large
mixed integer linear programming problems
(Caccetta and Hill [1999]). The method attempts
to strengthen lower bounds by the addition of
constraings {cuts) at each node within 2 Branch and
Bound procedure.  The initial lower bound is
provided by solving the relaxed linear
programming (LP)  problem (3)-(1f)  with

0= xy =< for all i, j and k. Next, a search for

one or more inequalities in K (K is a set of valid
inequalities for the original problem) that violates
the relaxed solution is performed. If no violations
are found, the process terminates, otherwise the
violating inequalities are added to the relaxed
problem and the process 1s repeated. If the process
terminates and the solution is not optimal, it is
necessary to branch.

The success of the cutting procedure depends
highly on a number of factors inciuding: finding
sets of strong inequalities of ¥; efficiently
searching for violating inequalities (or proving that

optimality is ot guaranteed. o fact; without - the
use of primal hewristics feasibility can not be
guaranteed. A further disadvaniage is that getting
a quality solution may require considerable time.
3.3 Branch and Beund

The method of Branch and Bound has been
effectively used to tackle a number of
computationally difficult problems. Basically, the
idea is to subdivide {(branch) the feasible solution
set into successively smaller subsets, placing
bounds on the objective function value over each
subset, and wsing these bounds to discard certain
subsets from further consideration. The suceess of
the method is highly dependent on the branching

rultes, the search strategy and the quality of the
iower and upper bounds.

Balas and Saltzman [i1991] and Magos and
Miliotis [1994] exploit the structure of the problem
for branching and for computing upper bounds.
Lower bounds are computed using a subgradient
optimisation method for solving the Lagrangian
relaxation problem.  In addition, Balas and
Saltzman [1991] incorporate  facet-defining
inequalities in the Lagrangian relaxation. They
tested their algorithm on 58 randomly generated

none-existy;-and-the order-in-which - the-subproblemyoeoes

are processed.

Within the Branch and Bound algorithin of Balas
and Saltzman [1991] they have exploited the
structure of the 3-D assignment problem by
introducing  facet-defining  inequalities.  These
inequalities are incorporated in the subgradient
optimisation  calculations  with  reasonably
successful resules.

Motivated by the recent success of the Branch and
Cut method for solving a number of large
combinatortal optimisation problems (Caccstta and
Hill {19997), we are presently devising algorithms
for solving the 3-D assignment problem. Also
encouraging is the strength of the lower and upper
bounds as reported in section 3.1 and the good
branching variables available. Note that when one
variable is fixed to 1, up to 3a°-2 additional
variable could be set to 0.

4. COMNCLUSIONS

The DAP is a fundamental part of the data fusion
process. This problem can be modelled as a multi-
dimension assignment problem, which for N = 3, is
NP hard. Methods used to solve the assignment
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problem include heuristics, Lagrangian relaxation
and  Branch and Bound. Very limited
computational analysis of these methods has been
recorded in the current literature, An alternate
method that we are currently investigating is that
of Branch and Cut. This method is very appealing
given the structure of the problem and the
availability of tight lower and upper bounds and
the presence of good branching variables. In fact,
the quality of the upper bounds generated by our
implementation of Max-Regret encourages the use
of Branch and Bound and Branch and Cut
methods.
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